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Spin Phase 

M a r i a n  G r a b o w s k i  j 

Received February 15, 1989 

The existence of a complementary quantity in the Weyl sense for the third 
component of spin is discussed. This is called the spin phase and the possibilities 
of measuring this quantity are considered. Connections between the spin phase 
and the indeterminacy of the direction for the spin are shown. 

1. INTRODUCTION 

The question of  the phase of  a spin seems to be strange. Sometimes 
one thinks about the orbital angular momentum more or less via the classical 
picture. It is a picture of  a vector in space. One of  the angles determining 
the direction is simply complementary to the third component of the orbital 
angular momentum and is called the phase of  the angular momentum. The 
counterpart of this notion for spin is more sophisticated. Many textbooks 
on quantum mechanics argue that the spin has such nonclassical properties 
that it cannot be represented in any case in a classical way. Further, the 
operator which should describe the spin phase should possess a continuous 
spectrum. At first glance such a property is impossible for the finite- 
dimensional case. 

I will show that the construction of the spin phase can be done in a 
way analogous to the harmonic oscillator case. This description requires 
the extension of the notion of observable in quantum mechanics in the 
spirit of  Davies (1976), Holevo (1982), and Ludwig (1983) (so-called gen- 
eralized observables, semispectral measures, semiobservables, effects). As 
a result, I obtain the semispectral measure complementary in the Weyl sense 
to the third component of  spin. 
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In considering an experiment which enables the measurement of such 
a quantity, I examine the recent experiment on spin superposition by 
Summhammer et al. (1983). Without such an analysis the construction of 
the spin phase has only a purely mathematical sense and its physical sense 
is highly incomplete. 

Furthermore, I discuss the description of the direction of spin within 
the extended quantum formalism with semiobservables. I obtain the connec- 
tions between the phase and the direction of spin. 

In addition, the entropic formulation of the "phase-third spin com- 
ponent"  uncertainty relation is given. 

2. FORMAL DESCRIPTION OF SPIN PHASE 

Let ~ = C 2j+1 be the Hilbert space for a spin system, where J = 1/2, 
1, 3 / 2 , . . . ,  and C denotes the complex numbers. The J i  are spin operators 
i = 1, 2, 3 with the commutation relation 

[~i,  ~j]  = i e o ~ k  (1) 

and r162 rn) = mlm) ,  m = - J , . . . ,  J. For operators ~• = ~l  + i J2  we can use 
the polar decomposition theorem (Reed and Simon, 1973) 

~+ = P(o~_~+)1/2; o~_ : (o~_~+)I/2p * (2) 

where P is a partial isometry with the following properties: 

Plm)=lm+ l), vlJ)=O 
(3) 

P,lm)=lm-1), p,l-/)=o 
and, moreover, 

[P, ~3] = P 

P and P* act between the following subspaces: 

P: [l+J>ll  [l-J>] �9 

P*: El+j>] = 

This means that 

(4) 

P * P  = I - I J ) ( J [  
(5) 

PP* = I - [ - J ) ( - J [  

where I is the identity operator. Using a very general theorem coming from 
Sz.-Nagy (1953) and Foia9 (1957), we have the spectral decomposition 

J 
~  . 

P = e'* M ( d r  (6) 
0 



Spin Phase 1217 

where M ( . )  is a semispectral measure. M is a spectral measure without 
the idempotency condition, i.e., M 2= M. For M we can adopt here the 
probabilistic Born interpretation of quantum mechanics and treat M as a 
generalized observable. We will call M the spin phase. Simple calculations 
with (4) give the Weyl form of the commutation relation for J3 and M, 

ei-'~J3M(A) e i~j~ = M(A - a )  (7) 

modulo 2~- for arbitrary AE ~(0 ,  2r the Borel or-algebra of (0, 27r). 
We can obtain the form of M in the spectral representation of  M. To 

build this representation, we take the Hilbert space L2(0, 27r) with the scalar 
product 

fo,- (~7, ~)= rl"P)~(cp) d~o/2~ (8) 

where ~7, ~: ~ L2(O, 27r). In L2(O, 27r) we choose the following subspace: 

= e c,~,c,.=(m[~),Oc~ = L2(0, 27r) 
m = - - J  

In ~ the P and P* have the form 

(PO)OP) = e i~[o(~)  - �9 e-iJ~] 
(9) 

(P*O) (~ )  = e-i~[ o ( ~ )  - c_j e ij~ ] 

In turn, M has in ~ the following shape (Grabowski, to appear): 

(rl, M(A)( )  = I~ rt(~)~:(q~) d~/2"rr (10) 

for A ~ ~(0 ,  2~)  modulo 2~-. In spite of(10), the M ( .  ) cannot be represented 
as a characteristic function of A (i.e., the idempotency condition does not 
really hold). It is easily visible for the case J = 1/2. The space ~ consists 
of linear combinations a cos ~ / 2 +  ~ sin ~/2.  The idempotency condition 
demands (XaO)(~)  e ~e, where Xa is a characteristic function of A. We cannot 
represent a function which is different from zero only on A as a linear 
combination of  sine and cosine. Thus XAO r ~.  For the same reasons the 
following property holds: 

(O, M ( A ) O )  < 1 (11) 

for all $ ~  and any subset A c ~ ( 0 , 2 7 r ) ,  A#(0 ,2~ ' ) ,  with nonzero 
Lebesgue measure. The inequality (11) means that the localization of the 
phase is impossible. 
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We can also 
decompositions 

we obtain 

write the M in C 2s+1. Starting from (10) and using 

- ame ; a m : ( r n l ~ )  
m 

bm, e ; bm=(rn l~)  
m' 

(12) 

M(A) = fa  ~ e'<m'-m'~lm)(m'l d~/2rr  (13) 
m,m'  

For further purposes we introduce the vector Iw(r - y s eim*lm ). Now 
- -  t r l  ~ - J  

we can write 

M ( A ) =  fa  Iw(q~))(w(~)l d ~ 1 2 ' r  = f~ P(~)dg~/2~r (14) 

The form (13) has been obtained by Holevo (1983) in quantum decision 
theory. 

3. THE POSSIBILITY OF MEASUREMENT OF SPIN PHASE 

To this point we have only a purely mathematical construction. This 
construction shows that the mathematical formalism of quantum mechanics 
and the probabilistic interpretation are large enough to encompass it. The 
semispectral measure M will attain the status of an observable in quantum 
mechanics when we provide a concrete experimental scheme of measure- 
ment of the parameter q~. The question is, what kind of experimental situation 
could be described by means of (14)? 

Several years ago Holevo (1983) treated an expression like (13) as a 
statistical inference problem. It was only a mathematical prescription of 
how to determine the parameter q~ on a certain class of states in an optimal 
way with respect to a chosen function. No concrete proposal of any experi- 
mental setup was given. At the same time, there appeared the possibility 
of preparation of a large set of states for spin 1/2 by means of neutron 
interferometry. These states can also be detected. Especially interesting in 
connection with the question of the phase of spin are the observations of 
fermion spin superposition by neutron interferometry performed by 
Summhammer et aL (1983). I believe that this type of experiment could in 
principle serve as a measurement for the spin phase. 

To discuss this, we must first recall the idea of the spin superposition 
experiment (Figure 1). A polarized incident neutron beam is split coherently 
and the spin in one of the beams is inverted. At the third crystal plate, the 
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the neutron interferometer [ I~h~ accelerator coil 

r "~ - / 

Fig. 1 

two wave packets with opposite spin directions are superposed. The wave 
function in the beam 1H behind the interferometer can be written as 

I~> = ~ ([�89 + ei~l- �89 (15) 

where 6 is a phase shift produced in P (Figure 1). In turn, the analyzer is 
such that it can detect the spin in any direction. This can be achieved by 
an accelerator coil which produces a variable magnetic field. The Larmor 
frequency within the coil can be varied by changing the current. Thus, the 
polarization vector can be turned by an additional angle q~. As a result, it 
can be made to assume an arbitrary direction in the x-y plane. Next, the 
Heusler single-crystal analyzer reflects only that part of the intensity which 
corresponds to a polarization parallel to the +x  axis. The intensity of the 
forward beam IH has been registered as a function of 6 (this angle can be 
changed in the neutron interferometer by means of phase shifter P) and 
the angle (p produced by the accelerator coil. The experiment was performed 
to establish I = 1(6) in the +x  and the +z  directions. Only in the +x  
direction has the interference pattern been obtained. 

According to the authors of this experiment it shows that the superposi- 
tion of  opposite spin eigenstates is a new state with the polarization vector 
perpendicular to both of  the spin states existing before superposition. 

We can look at this experiment a little bit differently. The neutron 
interferometer can be treated only as a preparation device. The neutron 
interferometry gives in principle the possibility of generating every state for 
spin 1/2. In this case, every state can be represented as 

I~/,> = In>-+ I~, O}=cosOei~/2]~)+sin 0 e-~'P/2[-�89 (16) 
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up to the phase/3, Jill = 1. Experiments have been reported (Zeilinger, 1979) 
in which every state (16) could be prepared. A partial absorber (magnetic 
phase shifter) was placed in one beam path inside the interferometer. Behind 
the interferometer we have 

= (1 + e - ~  + e ;a e-~ �89 (17) 

where e - ~ / 2  describes the absorber. For e -~ /2=tg(0 /2 )  we have (16). 
Now, for one established 6 our preparation device produces the state 

(15). The analyzer measures the intensity only as a function of 9. The 
Heusler crystal reflects neutrons in the +x  direction and can be described 
by the projector Px = 14`x><4`xl, where 14`x)= (2)-'/2(1�89 I-�89 action of 
the accelerator coil could be expressed by the unitary operator U. = 
e x p ( - i ~ 3 ) .  

We have I -  ](4'] U.4'x)l 2. Let us remark that U.14'x)is equal to Iw(~)) 
up to the normalization constant I -](4']w(~o))[2. For the prepared state (15) 
we have 

I ~ ](4'lw (~p))l 2 = 1 + cos(q~ + 6) (18) 

Many years ago Carruthers and Nieto (1968) introduced the so-called cosine 
operator C = �89  P*). Using the phase representation, we easily obtain 
for (15) 

f/ (~1cI4')  = cos ~14'(~,)1 ~ d~12~r =1 cos 6 (19) 

We see that for ~ = 0 

Z(O)--cos 6 -  (4`1C14`) (20) 

Measuring I--I(q~),  we have the possibility of determining the angle 8, 
and I(0) is proportional to the mean value of the cosine operator. Moreover, 
having 6, we can write 

f a I (~p)  d~o/27r  ~ (4', M(A)4') (21) 

It allows us to determine the probability that the spin phase is in A when 
the initial state was given by (15). We can also apply the interpretation 
given by Schroeck (1986) to (21). 

Two remarks seem to be indispensable. First, the proposal to measure 
I = I(q~) and from that determine the angle 6 is a purely theoretical one. I 
am not expert in the experimental area and am not prepared to evaluate 
presently existing technical possibilities and instrument sensitivity, but only 
the principle of such an experiment. This analysis is rather a proposal which 
should be investigated by experts in the field of neutron interferometry. 
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Second, it is tempting to treat generally the angle ~ in the parametriz- 
ation (16) as the value of the phase. In the case of spin 1/2, it is enough 
to take the projector P, = In)(nl for 0 = 7r/2 to obtain P(~o) from (14). The 
only difference is in the meaningless normalization factor. But this agreement 
is by chance. In fact, the description by means of P, is rather connected 
with the direction of spin. The angles ~ and 0 from (16) have a very clear 
geometrical meaning. Every state [q~) from ~ =  C 2 could be represented as 
a unit vector in the sphere $2 = {n ~ ~3, ][nl I = 1} and r and 0 determine the 
direction of the vector n. However, the equivalence between P(q~) and 
10 = ~r/2, ~)(0 = r ~1 is destroyed for J> �89  To see this, we must analyze 
the description of the direction for spin within the extended quantum 
mechanical formalism with semiobservables and show what kind of connec- 
tion there is between the phase and the direction of spin. 

4. CONNECTION BETWEEN THE PHASE AND 
THE DIRECTION OF SPIN 

There exists no state [~) for which 

~1~) = nl~p) (22) 

where n = (cos ~ sin 0, sin r sin 0, cos 0). But the same question for the 
projection of J onto n is already reasonable and 

( ~ "  n)[n, m)= mln, m) (23) 

For m = J we have (Radcliffe, 1971; Perelomov, 1986) 

J 

In, J ) ~  In)= Y~ Am(O) e-'mr (24) 
m = - J  

where 

 sin ) jm 

Using (23), we can build the semiobservable 

A(A) = f~ In><nl an (26) 

where a ~  ~($2) is the Borel o--algebra of $2 and d n =  
[ (2J+ 1)/4~-] sin 0 dO d~ is a measure on $2. Owing to the overcompleteness 
property of (23) (see, for instance, Perelomov, 1986), we have A(Sz)= I. 
Expressions like (26) have often been discussed: for spin 1/2, by Schroeck 
(1982, 1985) and Busch (1986), and for arbitrary spin by Holevo (1982). In 
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quantum mechanics we can speak about the direction of spin: it is the 
property connected with the semispectral measure (26). Let us remark that 

Is 1 2 nln)(nl dn = J-+-i ~ (27) 

It is a spectral decomposition for •r  1 with respect to A. When It/') is 
an initial state, then I~ I(+]n)l 2 dn is a probability of finding the direction 
of spin anywhere in A. For spin 1/2 we can use the formerly described 
apparatus to detect the intensity which corresponds to the above probability. 
We only must take into account the angle 0. It is the angle between the Oz 
and the direction of magnetic field in the Stern-Gerlach analyzer. If  the 
prepared state is ]0) = In'), we will register the intensity proportional to 
](n'ln)t 2=  ( l + n .  n')/2. 

It turns out that the question about the direction of spin leads to the 
question about the phase. 

First we see from (24) that l0 = ~r/2, ~)(0 = ~'/2)q~] is really different 
from P(~)  in (14) for J >  1/2. 

The connection between (14) and (26) will become visible when we 
calculate the marginal density for semiobservable (26). We obtain 

P(O)-- In)(nl d~/2rr 

J 

= ~ A2(O)lm)(ml (28) 
m = - J  

fo" 2 J + l  s /3(q~) = n)(n ~ sin 0 dO = • e i("-"')~" 
m , m ' = - J  

F ( J + l - ( r n + r n ' ) / 2 ) F ( J + l + ( m + m ' ) / 2 )  im)(rn,i (29) 
x [ ( j + m ) ! ( j _ m ) ! ( j + m , ) ! ( j _ m , ) ! ] u 2  

where F is the Euler function. Let us introduce the following definition: 

F(J  + 1 - (m  + m ' ) / 2 ) F ( J  + 1 + (rn + m')/2) 
a,,,,,,,- [ ( j + m ) ! ( j _ m ) ! ( j + m , ) ! ( j _ m , ) ! ] ~ / 2  (30) 

We remark that 0 <  a,,m, < - (ammamm,) l/2 = 1 because atom = 1. When we com- 
pare (29) with P (~ )  from (14) we see that these two expressions differ only 
by the factors atom,. 

In turn, P(O) is connected with the J3.  For fixed 0 we have Zm A~(O)  = 
1. The semispectral measure P(O) for given 0 looks like a density operator. 
The A ~ ( 0 ) =  I(rn ]n)] 2 are probabilities corresponding to all values of rn in 
the detection by means of a Stern-Gerlach analyzer when the direction of 
this device (i.e., the magnetic field) is n. This description of spin measurement 
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contains information about the measurement device. In indirect form P(O) 
carries properties of J3.  For instance, we recognize the main result of the 
Stern-Gerlach experiment, i.e., ( 2 J + l )  different deflections, because 
P( O)]m) = A~(  O)lm). Moreover, 

( J + l )  c o s O P ( O ) 2 J + l s i n O d O  = ~, m]m)(ml=~r (31) 
2 m=-J 

Thus, we also have agreement on the level of the mean values. 
For A(.  ) we can also restore the "phase-spin" uncertainty relation: 

1 mc~ 3 A@ > ~ (32)  

where 

A~3 --~ (J3 2) - (~3) 2, (~3) = (olJ l o>, = I(e'~)l -~ - 1 ,(e  'r 

f5 
It is a somewhat modified version of the uncertainty relation for J3 and 
sine and cosine operators introduced by Carruthers and Nieto. For details 
see Carruthers and Nieto (1968) and Holevo (1982). Simple calculations 
show 

AA~r ( J + l ) 2 c o s  2 0 .1 sin OdO-(~3)2>AJ3 (33) 

[ 2~- d~  ~ - 
fo ~--~e (O]P(~p)[qJ)I-2-1> Aq~ (34) AA~ I 

Thus, 

a , ,p~ aAr > �88 (35) 

The "phase-spin" uncertainty relation also has an entropic formulation. 
Using the same methods as for the pairs position-momentum, angle-angular 
momentum (Bialynicki-Birula and Mycielski, 1975), and phase-number of 
quanta (Grabowski, 1987), we have the inequality 

f I I I I J 2= d~,o(q~),21n14J(~)f2- Y, Icml21nlc.,t2>-O (36) 
Jo 27r m =-J 

The entropies in (36) are interpreted as the measures of uncertainty con- 
nected with the measurement of the phase for spin and the third component 
of spin. The sum of these entropies attains its lower bound if and only if 
the system is in an eigenstate Im). The inequality (36) is not trivial. The 
e n t r o p y  -~,m ]Cm] 2 lnlcml=-o because tc,,I 2< - 1. The same is not necessarily 
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true for the first expression in (36). For instance, when ItO~)=(1/,/2)x 

(I-~> + I-�89 

f) - I4,~,(~)121nlq, x ( q , ) l ~ d q , / 2 ~ r = l n 2 - 1 < O  (37) 

For (26) there also exists a proposal for how to restrict the entropy 
from below. Several years ago Lieb (1978) conjectured the inequality 

- I<Oln>l ~lnl(0ln)] 2 tin>-- ( 3 8 )  
s~ 2J + 1 

This conjecture is manifestly true for J = l  and the equality is attained for 
lO) = In') �9 Up to now this conjecture has not been proved. Scutaru (1979) 
verified it positively for 10)= Ira). The question arises as to what kind of 
physical property describes (38). 

I show that Lieb's conjecture reflects in a certain sense the "phase-spin';  
uncertainty relation. 

Introduce the notations 

f ( r  = !~(~)1 = = <0[P(~)l~> = 
J 
Y~ ?,,,,c,,, e i(~-''~'P (39) 

m , m ' =  - J  

J 
f ( ~ )  = (0lJ~(g~)[O)= '~ C.mCm'amm' e i~"-~')~" (40) 

rn ,m'~-J  

where 14')=Z,.  cmlm) and S ( f ) =  -S2ff(q~)ln/(q~) dq~/2~r. 
I will show that 

S ( ] )  >- S(T)  (41) 

The following relations are fulfilled: 

IIf]ll J o  2~-If(q~)l = 2  Ic~]2amm = 2  ]c,,I 2= ](q~)l = I]/]1, 
. l  Jo 2~-  

(42) 

(43) IIf]l~=sup]f] -< 5", ]CmllCm'lamm '<- I%1 =llfl l~ 
m,r?l  ' 

because am,, = 1 and am=,- < 1. Using the Riesz-Thorin theorem (Reed and 
Simon, 1975), we have 

IIfHp -< I]flle (44) 

where I[/llp = [I~ ~ I f ( ~ ) ]  p a ~ / 2 ~ 1 ' / ,  and 1 -<p -< oe. Taking the derivation of 
(44) at p = 1, we obtain (41). By means of a similar technique, we can prove 

S( ( OIP( O )lqJ) ) >- - • ]c~l 2 In I%1-" (45) 
m 
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Now, from the subadditivity of entropy we have 

s(<~lP(o)o)) + s((ol?(,p)l,))-> s(l(n[~)l ~)-> 2J 
2 J +  1 

(46) 

Taking into account (41), (45), and (36), finally, we have that 

s((olP(O)lO)) + s((o] P(~,)I,p)) -> 0 (47) 

Comparison of the two last inequalities suggests that Lieb's conjecture could 
carry information about the "phase-spin" uncertainty relation. 

We see that the description of the direction of spin is closely related 
to the spin phase. 

5. DISCUSSION 

Within the probabilistic scheme of quantum mechanics, I have provided 
the description for the spin phase. It is connected with the family of states 
[w(~0))=~.,, eim~[m). These states determine the spin phase operator as a 
semispectral measure. Owing to neutron interferometry, there is the possibil- 
ity of preparing and detecting the states I w (~)) for spin one-half. To describe 
the results of these experiments the notion of the polarization vector of 
spin, i.e., (nlfl~ln) = Jn was used. In such a description the difference between 
states and observables disappears. Instead of any observable in a state, we 
may think in terms of the classical vector n. For spin 1/2 this is possible 
because every state can be represented as In) and such a classical picture 
is justified. For J >  �89 we must use a more sophisticated formalism such as 
presented above, because not every state has a parametrization by n. In 
other words, the P representation for density operators [p =~s2 P(n)[n)~ 
in[ dn] for spin one-half always has P(n) - 0 and we can look at spin states 
very much in a classical sense. But for higher spins there exist states with 
P(n) <- 0 and they should show highly nonclassical properties similar to the 
"antibunching" and "squeezed" states of harmonic oscillators. Experi- 
mental investigations of such states should be very interesting. 

I have discussed the possibility of describing the direction of spin in 
quantum mechanics. Conceptually, the spin phase and the direction of spin 
are two different notions. Nevertheless, the A( . )  carries some knowledge 
about the phase. These two levels of description are not the same even for 
J = �89 Taking (14) and (29), we have 

�9 1 1 --icp 1 1 P(~)=  e'*l:)(-~[+e [-~)(~l+I (48) 

'T/" i v  I 1 P(q~) = ~  (e ]~)(-~[+ e-'~[-�89189 I (49) 
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In the language of intensities, this means 

I(~) = 4  I(r  +-34~ - (50) 

The question arises: What kind of description, (48) or (49), should be 
adopted to explain the experiment in Figure 1. What kind of intensity is 
measured by the experimental device I or I ? Is this device sensitive enough 
to distinguish between the two approaches? 

To conclude, I remark that this presentation of the connection between 
A and J3, M is very much in the spirit of the description for the simultaneous 
measurement of position and momentum (Davies, 1976; Busch, 1985; 
Prugovecki, 1984). 
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